浙江省科学技术奖公示信息表(单位提名)

提名奖项: 科学技术进步奖

<u></u>							
适应"双高"特性的变压器载荷能力挖潜与主动防护技术							
及工程应用							
一等奖							
科学技术进步奖:提名书的主要知识产权和标准规范目录、							
代表性论文专著目录,详见附表1、2。							
邵先军,排名1,正高级工程师,国网浙江省电力有限公							
司电力科学研究院;							
金凌峰,排名2,高级工程师,国网浙江省电力有限公司							
电力科学研究院;							
郑一鸣,排名3,正高级工程师,国网浙江省电力有限公							
司电力科学研究院;							
刘 刚,排名4,副教授,华北电力大学;							
梁苏宁,排名5,高级工程师,国网浙江省电力有限公司							
电力科学研究院;							
聂明军,排名6,高级工程师,杭州柯林电气股份有限公							
司;							
詹江杨,排名7,高级工程师,国网浙江省电力有限公司;							
李 元,排名8,副教授,西安交通大学;							
杨 智,排名9,高级工程师,国网浙江省电力有限公司							
电力科学研究院;							
刘云鹏,排名10,教授,华北电力大学;							
李博宇,排名11,助理教授,西安交通大学;							
李建华,排名12,工程师,杭州钱江电气集团股份有限公							
司;							
黄芝强,排名13,高级工程师,正泰电气股份有限公司。							

1.单位名称: 国网浙江省电力有限公司电力科学研究院 2.单位名称: 华北电力大学 3.单位名称: 杭州柯林电气股份有限公司 主要完成单位 4.单位名称: 西安交通大学 5.单位名称: 杭州钱江电气集团股份有限公司 6.单位名称:正泰电气股份有限公司 7.单位名称: 常州西电变压器有限责任公司 提名单位 浙江省电力学会 变压器作为电网的核心枢纽设备, 其载荷能力是电能 消纳传输的决定因素和安全运行的重要指标。随着新型电 力系统建设, 电网"双高"特性日益凸显, 变压器正面临 短时高峰负荷、谐波加剧等新挑战。现行技术存在热点计 算精度时效不足、重过载风险防控困难、载荷评估提升方 法欠缺等问题。针对上述难题, 成果在国家基金等项目支 持下,产学研协同攻关,开展了系列研究,提出了基于混 合有限元和降阶技术的变压器稳、瞬态温升快速计算方法, 揭示了热态下变压器缺陷产生诱因和发展特性,提出了基 于峰值边沿分析、压力时频信号等参量的异常"感知-定位 -预警"技术,首创了在役变压器载荷能力全生命周期动态 提名意见 差异评估系统, 研发了变压器载荷能力提升与风险防控系 列装备, 攻克了变压器不同工况下温度场的秒级在线推演 难题,实现了变压器缺陷感知、定位、预警及高风险故障 的主动防护,破解了电力供应紧缺和过剩轮番交替的难题。 成果实现了国内首个220千伏变压器载荷能力数智管 控示范应用,保障了700多台重过载变压器安全运行,提 升了 5400 兆伏安容量, 准确诊断 32 起设备异常, 研制的 高载荷换流变等装备成功应用于特高压白鹤滩-浙江工程、 世界首个柔性低频输电工程等重点项目,并出口马来西亚 等"一带一路"国家和地区,支撑了西电入浙、杭州亚运 会等重大保供工作,为推进新型电力系统建设、带动电力

装备产业链升级作出了贡献。

附表 1: 主要知识产权和标准规范目录

知识产权 (标准规 范)类别	知识产权(标准规范)具体名称	国家 (地 区)	授权号 (标准规 范编号)	授权(标 准发布) 日期	证书编号(标 准规范批准 发布部门)	权利人(标准规范起草单位)	发明人(标准规范起草 人)	有效状态
发明专利	一种油浸式电 力变压器绕组 温升快速计算 方法及系统	中国	ZL202311 624603. 4	2024/3/	第 6809212 号	国网浙江省电力有限公司电 力科学研究院	邵先军、刘刚、金凌峰、 王博闻、杨智、郑一鸣、 詹江杨、刘云鹏、王文浩、 姜雄伟	有效
发明专利	电力变压器二 维单分区绕组 稳态温升计算 方法和装置	中国	ZL202211 400732. 0	2023/10 /13	第 6392768 号	华北电力大学(保定)、国网 浙江省电力有限公司电力科 学研究院	刘刚、胡万君、金凌峰、 刘云鹏、詹江杨、王文浩	有效
发明专利	一种适用于变 压器内嵌的测 温光纤封装结 构及其使用方 法	中国	ZL202110 049348. X	2023/5/ 16	第 5975063 号	国网浙江省电力有限公司电 力科学研究院	金凌峰、郑一鸣、邵先军、 李晨、詹江杨、穆海宝、 张冠军、魏泽民、张恬波、 丁宁	有效
发明专利	一种适用于光 纤耐压性能测 试的电极装置 及方法	中国	ZL202011 060368. 9	2022/8/	第 5411270 号	国网浙江省电力有限公司电 力科学研究院、西安交通大 学	詹江杨、穆海宝、丁宁、 王成军、邵先军、钱平、 郑一鸣、金凌峰、张冠军、 何文林、魏泽民、李晨	有效

知识产权 (标准规 范)类别	知识产权(标准 规范)具体名称	国家 (地 区)	授权号 (标准规 范编号)	授权(标 准发布) 日期	证书编号(标 准规范批准 发布部门)	权利人(标准规范起草单位)	发明人(标准规范起草 人)	有效状态
发明专利	基于压力变化 趋势的油浸式 变压器数字式 非电量保护方 法	中国	ZL201910 151881. X	2020/1/	第 3671888 号	西安交通大学	郝治国、姚绍勇、司佳楠、 张煜成、李博宇、顾翼南、 徐靖东	有效
发明专利	变压器机械失 稳主动保护方 法、装置、设备 及存储介质	中国	ZL202411 114247. 6	2025/1/ 17	第 7671205 号	国网浙江省电力有限公司电 力科学研究院	邵先军、戚宣威、梁苏宁、 金凌峰、郑一鸣、杨智、 李晨、詹江杨、王博闻、 钱盾、陈孝信、金涌涛	有效
发明专利	一种基于温升 特性的变压器 负荷能力评估 方法	中国	ZL201711 078950. 6	2020/8/	第 3944538 号	西安交通大学	李元、刘宁、徐尧宇、穆 海宝、张冠军	有效

附表 2: 代表性论文专著目录

作者	论文专著名称/刊物	年卷页码	发表 时间 (年、月)
刘刚,郑直,荣世昌,武卫革,李琳	Numerical and Experimental Investigation of Temperature Distribution for Oil-Immersed Transformer Winding Based on Dimensionless Least-Squares and Upw/IEEE ACCESS (SCI)	2019,7,119110-119120	2019/8/26
刘云鹏,李昕烨,李欢,尹钧毅, 王佳雪,范晓舟	Spatially continuous transformer online temperature monitoring based on distributed optical fiber sensing technology/High Voltage (SCI)	2022,7(2),336-345	2020/10/27
刘刚, 兰和潼, 姜雄伟, 刘云鹏, 王文浩	基于温升特性的强迫导向油循环风冷结构变压器负荷能力评估/高电压技术(EI)	2024,50(1):232-241	2023/7/14